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The Hamiltonian St-cture of the Maxwell-Vlasav Equations

Jormld E. Marsden* and Alan Weinstein"

Dcpartisent of Mathematics
University of California

Berkeley, CA 94720

Abstract

Morrison [19801 has shown that the Maxwell-Vlasov and

Viasov-Poisson equations for a collisionless plasma can be written

in hamiltonian form relative to a certain Poisson bracket. We

derive another (very similar) Poisson structure for these equations

by using general methods of syplectic geometry. The main ingredients

in our construction are the symplectic structure on the co-adjoint

orbits for the groWp of canonical transformations and the symplectic

structure for the phase space of the electromagnetic field regarded

As a gauge theory. Our construction shows where canonical variables

can be found and can be extended to Yang-Mills gauge theories.

1. Introduction

In this paper we show how to construct a Poisson structure for

the Maxwell-Vlasov and Vlasov-Poisson equations for collisionless

plasmas by using general methods of syplectic geometry. We shall 04. . l

compare our structure to that obtained by Morrison [1980]. /oto
*Research partially supported by NSF grant MCS-78-06718 and
ARO contract DAAG-29-79-C-0086. . .

"Research partially supported by NSF grant MCS 77-23579. . e,
• . 1
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We consider a plasma consisting of particles with charge e and

mass a moving in Euclidean space IR with positions x and

velocities v. For simplicity we consider only one species of

particle; the general case is similar. Let f(x,v,t) be the plasma

density at time t, and E(x,t) and B(x,t) be the electric and

magnetic field. The Maxwell-Vlasov equations are:

at ax M~ c avIf 3B. - . 11

c . curl E

(1.2)

1 _E * curl B - _ I vf(x,v,t)dv
c at c v

div E pf, where pf e e f(x,v,t)dv

(1.3)

div B - 0

Letting c . leads to the Vlasov-Poisson equation:

af + af - a0f (
Tt ax - - ixT- 0

where

, - Pf. (1.5)

In what follows we shall set c a 1 in the Maxwell-Vlasov system.

The Hamiltonian for the Maxwell-Vlasov system is

H(fEB) u . mv f(xDvt)dxdv + J 2 (E(xt) + B(xt) ]dx (1.6)
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while that for the Vlasov-Poisson equation is

H(f) 1 J f(x,v,t)dxdv + .. f(x)pf(x)dx (1.7)

The Poisson bracket used by Morrison is defined on functions

F(f,EB) of the fields f,E,B by

{FG} f.6F Gd ,f6F 6G 6G 8F

{F.G) ',Gldxdv + cur1 i- - -curl TB d x

F 6FBf 6G 6Gaf 6F
*J v. U- dxdv (1.8)

+ x,v SF.A v 6G 6gGB x~ v).,Fvdxdv

where in the first term { , } denotes the usual Poisson bracket for

functions of (x,v), and where the functional derivatives are defined

in terms of the usual (Frbchet) derivative by

(DfF).f ixv W- £dxdv, etc.

For the Vlasov-Poisson equation, one keeps only the first term

of (1.8). The equations (1.1) and (1.2) (or (1.4))are then

equivalent to

- {PH} (1.9)

with H given by (1.6) (or (1.7) for the Vlasov-Poisson equation
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Our purpose is to show how another Poisson structure can be

constructed by a general procedure involving reduction (Marsden

and Weinstein [1974]) and coupling of hamiltonian systems to gauge

fields (Weinstein (1978b]). Our Poisson bracket differs from (1.8)

in that the last integral is replaced by

F 6F 3f 3_I6G) x B'dxdv S G 3f Ta t6G x BI dxdv(.0
xv 6- fv LTV--67 Bxv 3v LT -"7 ) I

Both structures satisfy the Jacobi identity and yield the correct

equations of motion for the hamiltonians we have specified; however,

ours is constructed by general principles rather than being ad hoc,

and it is clear where the canonical variables are to be found. In

addition, the equations div E a -and div B a 0 arise naturally from

the gauge symmetry of the problem and need not be postulated separately.

We believe that the presence of the two symplectic structures might

imply the existence of some new conserved quantities. -Our Poisson

structure fits into a pattern, special cases of which have been

found by others. For example, Arnold [1966] showed that the Euler

equations for a perfect incompressible fluid are a Hamiltonian system

in the canonical Poisson structure associated with the group of

3
volume preserving diffeomorphisms of a region in R . Using Arnold's

methods, one can also see that the compressible equations are

associated to the semidirect product of the group of diffeomorphisms

and the (additive group of) densities on R . It is easy to check

that this approach yields the same Poisson structure found for

perfect fluids by Morrison and Greene (1980] and ought to be extendible
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to the HD equations by the methods of this paper. The KdV equation

is associated with the Lie algebra of the group of canonical trans-

formations in the work of, for example, Adler (1979]. (We recall

that there is a standard link between the Maxwell-Vlasov equations

and the KdV equation -- see Davidson (1972]). In Ebin and Marsden

(1970), the functional analytic machinery required to fully justify

Arnold's approach was given. Itwaaproved, for example, that the

volume preserving diffeomorphisms form a true infinite dimensional

manifold which is, in an appropriate sense, a Lie group. It was also

shown that the group of canonical transformations has similar

features, but no physical interpretation was given. The Vlasov

equation provides one.

All of these clues suggest that it is fruitful to find a more

geometric and group-theoretic framework for the basic equations of

plasma physics. Such a framework is provided here. We

shall not deal with the delicate functional analytic issues needed

to make precise all the infinite dimensional geometry, nor shall we

deal with questions of existence and uniqueness (cf. Batt (1977] and

Horst [1980]).

Acknowledgment
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Bertram Kostant, Robert Littlejohn, Richard Spencer and Rudolf Schmid
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2. The Poisson Structure for the Density Variables

We begin by explaining the geometric meaning of the first term

in (1.8), "E Efdxdv. In the following sections, we shall
XV

explain the term for Maxwell's equations (the second integral in

(1.8)), and then finally the coupling terms (the remaining two

integrals).

In the absence of a magnetic field, by normalizing mass, we

can identify velocity with momentum; hence we let lR6 denote the

usual position-momentum phase space with coordinates

(Xlx 2,x3 ,Pl,p2,p3) and symplectic structure Zdxi - dpi . (See

Abraham and Marsden [1978] or Arnold [1978].) Let S denote the

group of canonical transformations of IR6 which have polynomial

growth at infinity in the momentum directions. The Lie algebra A

6
of S consists of the hamiltonian vector fields on I with

polynomial growth in the momentum directions. We can identify

elements of & with their generating functions, so that

C CdR 6 ); the (right) Lie algebra structure is given by the negative

of the usual Poisson bracket on phase space. (This follows from

Exercise 4.IG and Corollary 3.3.18 of Abraham and Marsden (1978]).

The dual space 6* can be identified with the distribution

densities on R 6 which are rapidly decreasing in the momentum

directions; the pairing between h 6 6 and f E * is given by

*

The generating function of a hamiltonian vector field is determined
only up to an additive constant. Whe "correct" group S is really
the group of transformations of IR x R preserving the 1-form
Ep dg + dT(Van Hove [1951]), but we can ignore this technical point
here 4ithout encountering any essential difficulties.
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(h,f) 6 hf dxdp

(The "density" is really f dxdp, but we denote it simply by f.) Now

as for any Lie algebra, the dual space 6* carries a natural Poisson

structure which is non-degenerate on the co-adjoint orbits (see,

e.g. Guillemin and Sternberg [1980]). In our case the orbit

through f E * is

0f -{n*f I n E 6) (2.1)

and so the Kirillov-Kostant symplectic form on 0f is given by

W ({f,h},{f,k}) - (f,{h,k}) (2.2)
ff

where {f,h} L Xf (Lie differentiation) represents a typical

tangent vector to 0f at f. (See p. 303 of Abraham and Marsden

[1978] -- two minus signs have cancelled here.) The hamiltonian

vector field XF on 0f determined by a smooth function

F: 6 - R satisfies

W f(XF(f),{f,k}) - dF(f).{f,k) (2.3)

for all k 6 E*. We claim that

XF(f) z- f,- (2.4)

I~~~~~~ in6 - .. . . .. . .. .. . . ..III f... .. =. .. . .... . . . .. i . . . . ii- . . . . . .. .. -. .
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Indeed, by (2.3) and (2.2) we need only check that

6F 6

(f,{67,k)) = dF(f).{f,k) = ( ,fk}) (2.5)

But (2.5) holds by integration by parts. In fact, the following

identity is of general utility:

- (f,{h,k})({f,k},h) (2.6)

Thus, the Poisson bracket on z* is given by

{F,G}(f) w wf(XF(f),XG(f)) (by definition)

6F 6G

*w {f,-},{f,-} (by (2.4))

6F 6G

fj r , F'}I (by 2.2)

We have proved:

2.1 Proposition. The natural Poisson structure on the dual of the

Lie algebra of the group of canonical transformations is given

bFGI - f{L 1 6G dxdp (2.7)

f fF
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Remarks. 1. Notice that (2.7) coincides with the first term for

the Poisson structure (1.8) if p is replaced by -r.

2. The bracket (2.7) automatically satisfies the Jacobi

identity since it coincides with the Poisson bracket on each of

the symplectic manifolds f.

3. (a) If f is a delta density, Of "coincides" with ]6

(In a similar way, every symplectic manifold is a co-adjoint orbit.)

For f a sum of n delta functions, 0 is the phase space for
f

n particles. For continuous plasmas, f is taken to be a

continuous density, in which case 0f can be shown to be a smooth

infinite dimensional manfiold.

3. (b) If f is a density concentrated along a curve, then

0f is identifiable with all curves having a fixed action integral.

This is a reduced form of the loop space, a symplectic manifold used

in the variational principle of Weinstein [1978a]. If f is

concentrated on a Lagrangian torus, then 0f consists of lagrangian

tori with fixed action integrals. This is related to a variational

principle of Percival [1979).

4. By using an appropriate Darboux theorem, (see Marsden [1981],

lecture 1), one can show that Of admits canonically conjugate

coordinates.

S. The Vlasov-Poisson equation is a hamiltonian system on 6*

with energy function given by (1.7). If f evolves according to

(1.4) then (1.9) is true. This is a direct calculation, already

noted by Morrison [1980]. More can be learned from our derivation

of the Poisson structure: the equation (1.4) is tangent to each
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orbit 0 so it defines a hamiltonian system on each orbit. This

can be seen directly by noting that (1.4) can be written in terms of

ordinary Poisson brackets as

.-- {f, H(f)) (1.4)'

where

1 2 eHC ) - 2mv +

Thus, the evolution of f can be described by

ft f 0

where f is the initial value of f, ft is its value at time t

and nt r S. In particular, if F is a function of a single real

variable we get the well-known conservation laws

IR6 F(f) constant in time

by the change of variables formula and the fact that each n E S is

volume preserving. (These conservation laws are useful in proving

existence and uniqueness theorems since, as in the case of two-

dimensional ideal incompressible flow, they lead to a priori Lp-

estimates.)
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6. In Ebin-Marsden [1970] the convective term v.Vv in fluid

mechanics led to a crucial difference between working spatially

(in the Lie algebra--the "Euler" picture) or materially (on the

group...the "Lagrange" picture). Here there is no such term, since

it would be given by {f,f}, which vanishes.

6. Analogies with fluid mechanics raise several interesting

analytical problems: (A) if 6 times a dissipation term associated

with collisons is added, do the solutions converge to those of the

Vlasov equation as 6-0? (Analogous to the limit of zero viscosity).

Standard techniques (Ebin-Marsden [1970], Kato [1975]) can probably

be used to answer this affimatively for short time.

(B) Can the hamiltonian structure be used to study cha otic or

turbulent dynamics, as was done in, for example, Holmes and Marsden

[1981)?

(C) Is the time-t map for the Vlasov-Poisson or Maxwell-Vlasov

equations smooth? See Ratiu [197Y] for a discussion of why this

question is of interest for the KdV equation.



§3. Maxwell's Equations and Reduction

Before coupling the Vlasov equation to the electromagnetic

field equations, we shall review the hamiltonian description of

Maxwell's equations. The appropriate Poisson bracket for the E

and B fields (the second term in (1.8)) will be constructed by reduction

(Marsden and Weinstein [1974]).

Let P - M be a given principal S1 bundle over a manifold M.

3 1 3In our case M =R and p - S x R Let Ot denote the (affine)

space of all connections for this bundle. Let G denote the group

of gauge transformations; i.e. bundle automorphisms of P - M.

Elements of G may be denoted e where o: M ..R. There is a

natural action of G on OZ given by

(e ,A) P A + do (3.1)

Consider T*O , the cotangent bundle of CC with the canonical

symplectic structure. Elements of TICX may be identified with pairs

(A,E) where A is a connection and E is a vector field density

on M. The canonical symplectic structure w on T*(X is given by

w((A1,E1),(A2,E2)) (E.A - E *A (3.2)

with associated Poisson bracket given by

(FGI 6F 6G 6E 6G,
m M -

-L -.... . -... , .. . . m , . . . .. . . ..... .... . .ml . .... . , n I -.. ' l l .. i. . ..
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Maxwell's equations in term of E and A are Hamilton's equations

on TNX relative to (3.2) for the hamiltonian

H(AE) - I .IEI2dx +. .IdW Idx (3.3)
.€ , 7 - -f~ • I c.

Now G acts on &Z by (3.1) and hence on T*LZ. It has a

momentum map J: TV, where the Lie algebra of G, is

identified with the real valued functions on M. The momentum map

may be determined by a standard formula (Abraham and Marsden (1978,

Corollary 4.2.11)) to be:

JJA,E). d.)-- div E'," (3.4)

Thus J-1 (0) - (CA,E) 6 T* Idiv E * 01 . By a general theorem on

reduction (Marsden and Weinstein [1974]), the manifold J-I(o)/G

has a naturally induced symplectic structure.

3.1. Proposition. We ma identi J'I(0)/G w=

M {(EB)j div E = 0, div B = 0). The Poisson bracket on L is

given by

6F 6 Gn 6G 6V',
{F,G} Q f6 F curl G "E curl -8'dx (3.5)

Maxwell's equations in the vacuum are Hanilton's ign&i ..fat

H(E,B) fj ( ',2 + fIB12dx (3.6)
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Proof. The identification between J 1 I(O)/G and M is by the

equation B - curl A. (We assume M has trivial first cohomology,

as is the case here; for Yang Mills fields, B is the "curvature"

of A.) Let F,G: M-IR. We may regard F and G as G-invariant

functions F, G on T*,. by B - curl A. Since Poisson brackets push

down tnder reduction we have

(FGI - (FG) (3.7)

where 0 means the induced function on M. Now in the canonical

structure on T*9 we have

-- U dx (3.8)

The chain rule and the definition of functional derivatives give the

identity

6F Adxra 6Fcurl A'dx-- Acurl F dx (3.9)

Substitution of (3.9) in (3.8) gives (3.5). The rest is readily

checked. N

This formalism generalizes readily to Yang-Mills fields and

to these fields coupled to gravity; see Arms [1979].
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54. A General Construction for Interacting Systems

The work of Weinstein [1978b] on the equations of motion for a

particle in a Yang-Mills field uses the following general set-up.

Let ff: 8 - M be a principal G-bundle and Q a hamiltonian G-space

(or a Poisson manifold which is a union of hamiltonian G-spaces).

Then G acts on T*B and on Q, so it acts on Q x T*8 . This action

has a momentum map J and so may be reduced at 0:

(Q x T*B) 1 I (0)/G

The reduced manifold carries a syqplct.c (or Poisson, if Q was

a Poisson manifold) structure naturally induced from those of Q

and T*8.

For a particle in a Yang-Mills field one chooses 8 to be a

G-bundle over 3-space M and Q a co-adjoint orbit for G (the

internal variables). The haailtonian is constructed using a

connection (i.e. a Yang-Mills field) for 8. For electromagnetism

G - SI and Q a (e) is a point.

For the Vlasov-Maxwell system we choose our gauge bundle to be

8 t * M

where M u {(E,B)j div B a 0) , with G - G the gauge group

described in the previous section.

We now choose S to be the group of canonical transformations

of T'M (- R6). We can let Q be eitner the symplectic manifold



is

T*S or the Poisson manifold a*. It remains to specify an action

of G on T*S . We set e I and let G act on S by

C*,n) do*won (4.1)

where w: R 6 .R3 is the projection (x,p) # x; i.e. we translate the

momentum space at x by d4(x). A simple computation gives:

4.1. Leuma. The action of G induces an action on a* tiven by

(a 0, f) 0-l' OTdO

where Tdo E S is translation br df . The momentum Tap J: 6* ) G*

for this action is given by

Jffl.9- - f f(x,p) (x)dxdp

To construct the interaction space we need to compute the

momentum map for the corresponding action of G on 6" x T*X given

by

Ce4 (fAE)) - (foTdo,A + 4,E) (4.2)

4.2. Leum. This oumentum mp is given by
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JffAE) " fx f(xp)*(x)dxdp + JE-d4dx

* Pf(x)f(x)dx - J div E *(x)dxx X

Again this is a straightforward calculation. Our reduced

(interaction) space J' (o)/G may now be identified with

VM . {(f,B,E) jdiv E a pf, div B a 0) (4.3)

where

J- 1 (O) * ((f,A,E)I div E = Pf).
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§5. Computation of the Poisson Structure

By reduction, the space VM defined by (4.3) has a natural

Poisson structure; we now compute it.

5.1. Theorem. The Poisson structure on VM is given by

(FG} , 8F 6 dxdp

* curl *SG - -Sg cur I a) dx

(S.1)
" [fxp f(3-P 6F(7_ldiv 6G)dxdp

Proof. Having identified J1 I(O)/G with V/M , one checks

that the natural projection r: J- (0) - VM is given by

w(f,A,E) a (foT , curl A, E) (S.2)

where

A " -A'I (div A) (S.3)

and, as before, TdOA is translation by df A
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Next, define a projection map

X: 6* x TV*., J 1(0); X(f,AE) * (f,A,E + Vf,E) (5.4)

where f,E A1 (pf " div E).

Now if F,G :VM R ]R, we can extend F,G to maps on 6* x TV.

by

F - FonoX, G - GonoX (s.s)

If we denote the map noX by

(f,A,E) ,,P

we have, from (S.2) and (5.4),

curl A (S.6)

- E + V f,E

Since J l(o) is co-isotropic, Poisson brackets can be computed

in a* x TrX, and the answer is independent of how F and G are

extended to 6* x T*Z . We chose the specific map X to effect

the extension explicitly.
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Using the definition of functional derivatives and the chain

rule, one finds the following relationships

6F f: 61F \. F-A 1"div A.i

F x d.  p curl L- (5.7)

p 63 aF

6FP 8F a -l1 iF

Substituting (5.7) into the Poisson structure on A* x T*3t obtained

from that on 6* (see 2.7) plus that on T*'Y (see 3.2), i.e. into

* p, f , dxdp + a 6 (5.8)

we obtain formula (S.1). 8

Note: In carrying out the substitution of (S.7) into (S.8), some
cancellation occurs since a C 1xdiv V  is the gradient part of V,

which is L -orthogonal on R 3 to divergence-free vector fields.

The Poisson structure (S.1) automatically satisfies the Jacobi

identity, since it is the structure associated with reduced manifolds,

which are symplectic.

I
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The haniltonian for the Vlasov-Maxwell equations in the momentum

space representation is the function H on 6* x TOML given by

H(f,A,E) a f l(p-A)2f(xp)dxdp + .1 (E2 + (curl A) 2)dx (5.9)
x,px

This hailtonian is gauge-invariant; i.e. it is invariant under the

action of G given by (4.2). Thus H produces a well-defined

hamiltonian H 0 on VM . We find that

H0 (f,B,E) - 2 f(x,p-7 x A'1B)dxdp + I. (E2 + B2)dx (5.10)
x,p

5.2. Theorem. The hamiltonian (S.10) in the Poisson structure (5.1)

yields the Vlasov-Maxwell equations in momentum representation.

This can be checked directly; however, to facilitate comparison

with Morrison's results we shall transform our Poisson structure to

produce a velocity space verson of 5.2.
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§6. Transformation to Velocity Representation

To compare our bracket (5.1) with Morrison's (1.8), we transform

(5.1) to velocity space. Let us denote the space defined by (4.3)

by VMp to emphasize that f is a density on position-momentum

space. We write VM for the corresponding space (4.3) for f a
V

density on position-velocity space. We shall take e = 1, m = 1

for simplicity. Define the transformation

P : VMv . VM

by

(f,B,E)

where

f(x,p) f(Xp + V x A B(x) )

B B (6.1)

and E=E

6.1. Theorem. The transformation (6.1) transforms the bracket (5.1)

to (1.8) with the last two terms replaced by (1.10). Both bracket

yield the correct equations of motion; i.e. (1.1)-(1.3) im lyat

(1.9) holds.
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Sketch of Proof. We make these remarks: (a) Transforming the

first term of (5.1) produces the first term of (1.8) plus the

term (1.10). This is seen using the chain rule and the equation

p + VxA'IB = v.

(b) The second and third terms of (S.1) both produce extra

terms via the chain rule. These recombine to give the second and

third terms of 1.8,

(c) In the special case in which G is the Hamiltonian (1.6),

both (1.10) and the last term of (1.8) give the same expression. This

is why both structures give the same equations of motion. U
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§7. Additional Remarks

(A) Poisson structures may be viewed as bundle maps taking

covectors to vectors. (In this guise, they are called "cosymplectic

structures.") Viewed this way, Morrison's bracket is the map

(f*,B*,E*) ,+ (6f,6B,tE)

given by

if -:f,f*} - ; . v x B*)

B = v) f*dv - curl E* (7.1)

SE f L fdv + curl B*

p a

while our cosymplectic structure is given by

S -{f,f* + A-I div E*)

6B u-curl E (7.2)

6E -Pf f" .fdp + curl B*

p

in momentum representation, where P is the projection to the

divergence free part. In velocity representation, (7.2) becomes
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f = .. ff*+ A"1 divE*1- X B)

6B = - curl E (7.3)

6E - -f*dv + curl B*
av

Thus (7.1) and (7.3) differ only in the terms

v x B* verses L x B
av

From (7.2) we see explicitly that 6f is tangent to co-adjoint

orbits in S. (This fact is obscured in velocity representation.)

On the other hand, when Morrison's structure (7.1) is transformed

to momentum space, 6f is not tangent to co-adjoint orbits of S.

(B) A "cold plasma" may be defined as one for which f is a

6 measure supported on the graph of a vector field p - e(x). This

property persists as f evolves by composition with a canonical

transformation. In fact, the property that 6 is curl-free is also main-

tained, since this corresponds to the graph's being a lagrangian

submanifold. After a long time, the submanifold may no longer be

a graph. This is the "shock" phenomenon, leading to multiple

streaming (Davidson [1972] .) We remark that Maslov ([1976], p. 44)

has already noticed this evolution of lagrangian submanifolds for the

Vlasov-Poisson equation.

(C) We would like to understand in general terms the contraction

of one hamiltonian system to another. Examples are the passage to the
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restricted three body problem from the full three body problem and

the limit c - - to get the Vlasov-Poisson equation. It would also

be of interest to realize both the Vlasov-Maxwell and MHD equations

as limiting cases of a grand hamiltonian system constructed from

the Boltzmann equation.

(D) We have remarked that our formalism readily generalizes

to Yang-Mills interactions. Is such a hamiltonian structure useful

in nuclear physics for Yang-Mills plasmas?
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